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The stochastic modelling of degradation processes requires different characteristics to be 
considered, such that it is possible to capture all the possible information about a phenome-
non under study. An important characteristic is what is known as the drift in some stochastic 
processes; specifically, the drift allows to obtain information about the growth degrada-
tion rate of the characteristic of interest. In some phenomenon’s the growth rate cannot be 
considered as a constant parameter, which means that the rate may vary from trajectory to 
trajectory. Given this, it is important to study alternative strategies that allow to model this 
variation in the drift. In this paper, several hazard rate functions are integrated in the inverse 
Gaussian process to describe its drift in the aims of individually characterize degradation 
trajectories. The proposed modelling scheme is illustrated in two case studies, from which 
the best fitting model is selected via information criteria, a discussion of the flexibility of the 
proposed models is provided according to the obtained results.
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1. Introduction
One of the main approaches that has been considered in the last 

years for the reliability assessment of products and systems is based 
on degradation models. This modelling approach considers character-
izing the degradation trajectory of a performance characteristic such 
that it is possible to extrapolate this trajectory to a critical level in 
the aims of obtaining pseudo failure times, from which a reliability 
assessment is performed. Degradation models based on stochastic 
processes have been proved to be an efficient alternative to model 
degradation processes as they consider the temporal uncertainty for 
the evolution of the degradation trajectory [41]. Furthermore, these 
models present different properties that are appealing to obtain reli-
ability estimations [15, 21, 39].

Given different conditions of the products of interest and the ex-
perimental conditions, it results necessary to perform modifications 
in the modelling schemes of degradation process. For stochastic proc-

esses, these conditions can be incorporated considering random ef-
fects, which are defined by considering that one parameter of the sto-
chastic process is a random variable. The inclusion of random effects 
is different for every stochastic process, e.g., for the gamma proc-
ess, the scale parameter has been considered to integrate the random 
effects [12, 22, 30–32]. For the Wiener process, different schemes 
have been proposed in the literature to include random effects, these 
schemes consider that only the drift, only the diffusion of the proc-
ess are random variables, or both are random variables [14, 28, 29, 
33]. As for the inverse Gaussian (IG) process, different schemes have 
also been proposed that consider that only the drift or the shape are 
random parameters or both are random [5, 15, 18, 19, 34, 38]. The 
different schemes of inclusion of random effects in the different sto-
chastic processes, generally obey to the visible characteristics of the 
degradation trajectories. If it is observed that there is a large variation 
of the degradation rates (variation between trajectories), then the drift 
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of the stochastic process may be considered as a random variable to 
account for this variation. On the other hand, if it is observed that 
there is a large variation within the trajectories, i.e., the large variation 
in the trajectory increments, then a parameter such as the diffusion in 
the Wiener process may be considered to account for this variation. 
Rodríguez-Picón [23] and Peng et al. [19] defined particular models 
for this scenario under the gamma and IG process. Finally, if a large 
variation between trajectories and within trajectories is noted, then 
multiple parameters of the stochastic process may be considered as 
random variables.

However, the behavior of the degradation trajectories may change 
over time, beyond the previously discussed scenarios based on varia-
tion, as they are continuously monitored. This means that the consid-
eration of random effects in the modelling does not allow to describe 
the evolutive behavior of the degradation trajectories. Which means, 
that if a certain parameter of a stochastic process is considered to be 
random, this will not change the behavior of the trajectory, i.e., if a 
trajectory is increasing then the inclusion of random effects will al-
low to account for the observed variation, but it will not account for 
the drift change of the trajectory. Peng et al. [20] presented an IG 
process with time-varying rates, they considered the mean function 
of the IG process to model monotonic degradation rates by consid-
ering the Weibull hazard rate function. When the parameters of the 
hazard rate are estimated then it is possible to note if the degrada-
tion rate is increasing, decreasing or constant. This is an important 
characteristic, as it is possible to determine the behavior of the tra-
jectories’ drift. On the other hand, probability distribution functions 
(PDF) that have flexible hazard rates have received great attention in 
the last years [2, 4, 7]. Several PDFs have been proposed in the lit-
erature to describe multiple hazard rate behaviors, such as increasing, 
decreasing, constant, bathtub shape, upside down bathtub shape and 
j-shape [10]. Hjorth [9] developed a distribution with increasing, de-
creasing, constant and bathtub-shaped hazard rate, the distribution is 
intuitive to detect these types of hazard rates based on the parameters 
of the distribution. SchÄbe [27] proposed lifetime distributions based 
on the truncation of PDFs which allowed to construct distributions 
with bathtub hazard rates. Xie and Lai [36] proposed a bathtub shaped 
failure rate distribution based on the addition of two Weibull distribu-
tions. Xie et al. [37] proposed a generalization of the Weibull distribu-
tion to describe bathtub failure rates, one parameter of the proposed 
distribution allows to define behaviors such as increasing, decreasing 
and bathtub shape. Lai et al. [11] proposed a distribution which is 
derived as a limiting case of the Beta Integrated Model and consid-
ered as a 3-parameter generalization of the Weibull distribution, this 
distribution also allows to describe bathtub hazard rates depending 
on the values of its parameters. Chen [6]  also proposed a distribution 
that can describe bathtub hazard rates but with only two parameters. 
Dimitrakopoulou et al. [8] developed a three-parameter distribution 
that in addition to the increasing, decreasing and bathtub shapes also 
describes an upside-down bathtub shape. The Burr XII distribution 
has also been identified as a flexible model that can describe various 
forms of its hazard rate function [40]. Other distributions have been 
proposed in the literature that describe diverse shapes of the hazard 
rate functions. Although, as the number of parameters is high, the 
hazard rate function results in complex forms. Such is the case of the 
Beta-Weibull distribution [13], the exponentiated Weibull distribution 
[17], models based on the sum of hazard rate functions such as the 
exponentiated additive Weibull distribution [1], models that consist 
in the combination of different distributions to define new modelling 
capabilities [3, 25, 26].

Many manufactured products have complex characteristics and 
properties, which may result in an irregular degrading behavior of 
certain characteristic of interest. Based on this, the reliability model-
ling implies a complex task. In this paper, several flexible hazard rate 
functions, such as the Hjorth, Lai modified, and modified Xie models, 
are considered as the mean function of the IG process, this consider-
ation allows to efficiently characterize the behavior of the degrada-

tion trajectories which may results in accurate reliability estimations. 
Furthermore, random effects are considered in the modelling in the 
aims of determining the behavior of each degradation trajectories ac-
cording to the rules of every hazard rate function. As the hazard rate 
functions are directly related to the mean of the IG process, this in-
creases the complexity of the model, thus an estimation scheme based 
on the MCMC Gibbs Sampling method is considered. The estimation 
procedure is implemented in the OpenBUGS software. The proposed 
models are compared with the IG-Weibull model proposed by Peng et 
al. [20] in two case studies. From which a discussion about the capa-
bility and flexibility of the modelling approach is provided.

The rest of this paper is organized as follows: In Section 2, the pro-
posed modelling scheme based on the IG process and flexible hazard 
rates as drifts is presented and discussed. In Section 3, the estimation 
method based on a Bayesian approach is presented. In section 4, we 
present the considered case studies and the obtained results from the 
implementation of the proposed modelling approach. In Section 5, 
the discussion about the obtained results is presented, general insights 
are provided for the interpretation of the proposed modelling scheme. 
Finally, in Section 6 the conclusions are provided.

2. The inverse Gaussian process with hazard rate 
functions-based drifts

The IG process is a non-monotone stochastic process that models 
the behavior of a degradation process ( )( ); 0X t t >  over time ( )t  
and has the property that the increments ∆ ∆X t X t t X t( ) = +( ) − ( )  
follow an IG distribution f t tIG µ η∆ ∆, 2( )  and the increments ∆X t( )  
are independent. The parameter µ > 0  represents the drift of the pro-
cess, while η > 0  represents the shape parameter. Generally, this 
model is adequate to characterize the behavior of degradation process 
with additive and irreversible damages.

The PDF of ( )X t  is defined based on the IG distribution as [19]:
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By considering that a degradation test is performed in a sample of 
n  simultaneously used homogeneous devices of interest, with the 
consideration of ( )m  degradation measurements per device. Then the 
degradation measurements X t i n j mi j( ) = … = …; , , , , , , ,1 2 1 2 , define 
degradation trajectories for each i  with 1,2, ,j m= … . Furthermore, 
X ti j( )  follow an IG distribution as defined in (1). Thus, the degrada-

tion increments ∆X t X t X ti j i j i j( ) = ( ) − ( )+1  follow an IG distribu-

tion as ∆ ∆ ∆X t f t ti j IG j j( ) ( )~ ,µ η 2 .

Based on these characteristics and considering that the parameter μ 
denotes the degradation rate. Then, it is possible to determine a partic-
ular parametric function to characterize the behavior of the degrada-
tion rate. One scenario result by considering that the rate is monotone 
[20], then it is adequate to consider the Weibull hazard rate as:
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t t
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where, Wβ  and Wα  are the shape and scale parameters of the Weibull 
distribution, respectively. Thus, the degradation rate depends on the 
estimated value of Wβ , i.e., when 0 1Wβ< <  the rate is decreasing, 
when 1Wβ =  the rate is constant and when 1Wβ >  the rate is increas-
ing. Although, these three scenarios are adequate for some degrada-
tion process, other hazard rate functions can be considered as the IG 
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drift to extend the flexibility of the model. For example, the 
Hjorth hazard rate is defined as:

 ( ) ( ).                                                           2
1

H

H
h t t

t
θδ

β
= +

+
 (2)

Different behaviors can be described from this hazard rate 
[9], for example:

When,  – 0Hδ β= = ; the rate is constant.
When  – 0δ = ; the rate is decreasing.

When  – H Hδ θ β≥ ; the rate is increasing.

When  – 0 H Hδ θ β< < ; the rate has a bathtub shape.

On the other hand, the hazard rate function defined by Dimi-
trakopoulou et al. (2007) is denoted as:

 h t t tD D D DD D D( ) = +( )− −
α β λ λβ β α1 1

1 .��������������������������������������������������3( ) (3)

Again, different behaviors of the hazard rate can be described 
depending on the values of certain parameters, for example,

When  – 1D Dα β= = ; the rate is constant.

When  – 1Dα >  and 1Dβ ≥ ; the rate is increasing.

When  – 1Dα <  and 1Dβ ≤ ; the rate is decreasing

When  – 1Dα ≥  and 1Dβ < , and 1D Dα β > ; the rate has 
a bathtub shape.
When  – 1Dα ≤  and 1Dβ > , and 1D Dα β < ; the rate has 
a unimodal shape.

In addition to the previously discussed distributions, other 
hazard rate functions along with their respective propierties are 
presented in Table 1. Furthermore, in Figure 1 different scenarios of 
the hazard rate are illustrated for every distribution under various val-
ues of the specific parameters. From this figure, it can be noted that 
the hazard rate models are flexible to describe a diverse amount of 
shapes.

The depicted behaviors of the hazard rates may be considered in 
the drift of the IG process in the aims of extend the flexibility of the 

stochastic process. Thus, it is considered that for the IG process the 
drift is defined as:

 µ µt t h th( ) = ( ) = ( ).��������������������������������������������������������4( ) (4)

Thus, the model for a degradation trajectory will have a PDF as de-
scribed in (1) by considering the relation in (4) as ( )( )| , ,hf X t tµ η .

It should be noted that for some of the previously discussed PDFs 
in Table 1, the form of the hazard rate depends only on one parameter, 
then the estimation of this parameter may indicate the behavior of 
the IG drift. As in a degradation test, a total of n  trajectories are ex-
pected to be observed, each one of this may have a specific behavior. 

Thus, random effects may be considered in the haz-
ard rate with the objective of estimating the hazard 
rate parameter that defines the behavior of the drift 
for every trajectory. For example, by considering the 
Xie modified Weibull model as the IG drift:

( )
1
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X X
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−
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Then Xβ  may be considered as a random effects 
parameter as X iβ  with PDF β β β βX i X if a b

X X
~ ,|( )

. This parameter will be estimated for each trajec-
tory 1,2, ,i n= … , which will allow to determine the 
shape of the drift individually. Then, the degradation 
model based on the IG process with the Xie modified 
Weibull hazard rate function-based drift and random 
effects has the following PDF:

( )( ) ( )( ) ( ) ( )
0

| , , , , , | , , , ,  | ,  .  5
X X X XX X X X X i X i Xf X t a b t f X t t f a b dβ β β βη λ α λ α β η β β

∞
= ∫

Table 1. Hazard rate functions for different distributions

Distribution Hazard rate Properties  

Lai modified Weibull ( ) ( ) ( )1 expLL Lh t vt t vtβλ β −= +
1;Lβ ≥  increasing

0 1Lβ< < ; bathtub

Xie modified Weibull ( )
1

exp
X X

X X
X X

t th t
β β

λ β
α α

−
   

=    
   

1;Xβ ≥  increasing

0 1Xβ< < ; bathtub

SchÄbe ( ) ( ) ( )
1 1

/ /S S S S
h t

t tθ γ θ θ γ θ
= +

+ −
1γ < ; bathtub

1γ ≥ ; increasing

Chen distribution ( ) ( )1 expC C
C Ch t t tβ βλ β −=

1;Cβ <  Bathtub

1Cβ ≥ ; increasing

Fig. 1. Behaviors of the hazard rates of different distributions
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The model in (5) can be modified for any hazard rate in Table 1 
or the models described in (2) and (3). In general, the model for any 
hazard rate function ( ) ( )hh t tµ=  with random effects results in:

( ) ( )( ) ( ) ( )( ) ( ) ( )1 2 1 2
0

| , , , , | , ,  | ,  ,                   6h h i if X t t t f X t t t f R dRη µ θ θ µ η θ θ
∞

= ∫    (6)

where, iR  represents a parameter from ( )h tµ  that is selected to be 
random. On the other hand, 1θ  and 2θ  represent the parameters of the 
PDF that describes iR .

3. The estimation of parameters
The model presented in (6) results in a quite complex form with 

no analytical expression. Indeed, the complexity of the model may 
increase depending on the selected hazard rate function for drift of the 
IG process. Despite the complexity of the model, it considers an im-
portant aspect that allows to adapt the drift of the process. On the oth-
er hand, it is of interest to estimate the parameters ( )( )1 2, , ,h tη µ θ θ  
to assess the fitting of the model for specific degradation datasets. 
However, the classical estimation methods may result quite compli-
cated to implement. Based on this, in this paper, a Bayesian estimation 
approach based on the Gibbs sampler and the Markov Chain Monte 
Carlo method is considered. This method has been found to be ap-
propriate to estimate the parameters of complex functions given that 
it allows to sample from a desired distribution, such as the one in 
(6), to obtain consistent estimators of the parameters of interest [16]. 
Furthermore, the implementation of this method is relatively straight-
forward as there are several specialized open software’s, which allow 
to implement complex function for estimation purposes. Specifically, 
the OpenBUGS software is considered to estimate the function in (6) 
under different scenarios of the hazard rate functions.

In general, non-informative prior distributions are considered for 
all the parameters of interest. Specifically, for η , the non-informative 
prior is a gamma distribution as ( ),f a bη η η . As ( )h tµ  may have 
different parametrizations, in general for all the possible combination 
of parameters, non-informative gamma distributions are considered. 
For example, for the Xie modified Weibull hazard rate, it is consid-
ered that the non-informative gamma distributions are defined as 

( ),
X X X

f a bλ λ λ  and ( ),
X X X

f a bα α α . Finally, for the selected ran-
dom effects parameter iR , the non-informative gamma distributions 
for its parameters are considered as ( )1 1 1

,f a bθ θ θ  and ( )2 2 2
,f a bθ θ θ .

On the other hand, considering that degradation measurements 
( )i jX t∆  have been observed for 1,2, ,i n= …  and 1,2, ,j m= … . 

Then, the likelihood function for the distribution of interest with ran-
dom effects results in:

L X t t f R f X t ti j h
i

n
i

j

m
i j h∆ ∆( ) ( )( ) = ( ) ( )

= =
∏ ∏| | |η µ θ θ θ θ µ, , , ,1 2

1
1 2

1
(( )( )











, .η

(7)

If random effects are not considered in the hazard rate for the IG 
process, then the parameters of interest are ( )( ), h tη µ , and the likeli-
hood function is defined as:

 L X t t f X t ti j h
i

n

j

m
i j h∆ ∆( ) ( )( ) = ( ) ( )( )

= =
∏∏| |η µ µ η, , .

1 1
 (8)

Considering the likelihood function in (7) and the previously de-
scribed non-informative distributions. Then, assuming that the effects 
are independent, the posterior distribution with random effects is de-
fined as:

p t X t f f f f th i j t hh
η µ θ θ η θ θ µη θ θ µ, , ,( ) ( )( ) ∝ ( )× ( )× ( )× ( )( )1 2 1 21 2

|∆ (( )× ( ) ( )( )L X t ti j h∆ |η µ θ θ, , , ,1 2

(9)

where, ( ) ( )( )h htf tµ µ  may represent a set of prior distributions, de-
pending on the selected hazard rate function. While the posterior dis-
tribution for a model with no random effects is defined as:

p t X t f f t L X t th i j t h i j hh
η µ η µ η µ θη µ, , ,( ) ( )( ) ∝ ( )× ( )( )× ( ) ( )( )| |∆ ∆ 1,, .θ2( )

(10)

Again, ( ) ( )( )h htf tµ µ  represents a set of prior distributions de-
pending on the selected hazard rate function. These posterior distri-
butions are considered to implement the MCMC Gibbs sampler in 
OpenBUGS to obtain estimations of the parameters of interest. Spe-
cifically, a total of 70,000 iterations were considered for estimation 
purposes and 20,000 iterations for burn-in purposes. An example of 
the developed estimation code in OpenBUGS is presented as follows 
for the IG process with the Hjorth hazard rate and δ  as a random 
parameter.

4. Analysis of the considered case studies
Two cases studies are considered to illustrate the applicability of 

the proposed modelling approach. Several schemes of the discussed 
hazard rates are considered to describe the drift of the IG process. 
Furthermore, the parameters estimation approach based on the Baye-
sian method is implemented in OpenBUGS for all the models, and 
the performance for each scenario is compared based on the deviance 
information criterion (DIC), which is defined as:

 ( )( )2log X| 2 ,ˆ
DICDIC L pξ= − +  

where, ξ̂  represents a set of parameters of interest, and DICp  is an 
estimate of the effective number of parameters, which is obtained 
as the difference between the posterior mean deviance denoted as 
( ) ( )( )( )X| 2log X| |XˆD E Lξ ξ= −  and the deviance at the posterior 

mean of ξ̂ , denoted as ( ) ( )( )X| 2log X ˆ|ˆD Lξ ξ= − .

 ( ) ( ).ˆX| X| ˆ
DICp D Dξ ξ= −

model {

for (i in 1:N)
{
delta[i] ~ dgamma(shape, scale)
for(j in 1:M-1)
{
x[i,j] ~ dinv.gauss(miu.u[i,j], eta.u[i,j])
eta.u[i,j] <- eta.su * (pow(ts.u[i,j], 2))
miu.u[i,j]<-  ( (delta[i]*t[j+1])+( theta/(1+(beta*t[j+1])) ) ) - ( 
(delta[i]*t[j])+( theta/(1+(beta*t[j])) ) )
ts.u[i,j]<- ( t[j+1]  - t[j])
}
}
shape ~ dgamma(1, 0.001)
scale ~ dgamma(1, 0.001)
theta ~ dgamma(0.1, 0.001)
beta ~ dgamma(0.1, 0.001)
eta.su ~ dgamma(0.1, 0.001)
}
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For the two case studies, the next hazard rate functions were con-
sidered: Weibull ( ),W Wα β , Hjorth ( ), ,H Hδ θ β , Dimitrakopou-
lou ( ), ,D D Dα β λ , Lai modified Weibull ( ), ,L L vλ β , Xie modified 
Weibull ( ), ,X X Xλ β α  and Chen ( ),C Cλ β . Random effects were 
considered for some of these hazard rate functions; in the case of the 
Weibull distribution the shape parameter W iβ  was considered to be 
random following a gamma distribution with shape parameter 

W i
aβ  

and scale parameter 
W i

bβ . For the Hjorth rate, the parameter iδ  was 
considered to be random following a gamma distribution with shape 
parameter 

i
aδ  and scale parameter 

i
bδ . While, for the Dimitrakopou-

lou rate the parameter Diα  was considered to be random following a 
gamma distribution with shape parameter 

Di
aα  and scale parameter 

Di
bα . All the considered models are enlisted as follows:

The simple IG process denoted as 1. ∆ ∆ ∆X t IG t ti j j j( ) ( )~ ,µ η 2 .

The IG process with Weibull drift as:  2. 

∆ ∆ ∆ ∆X t IG t t t
t t

i j h j j h j
j

W

j

W

W W

( ) ( ) =








 −











+~ , ,µ η µ
α α

β β
2 1 .

The IG process with Weibull drift and random effects (IG-W-3. 
RE) as:   

∆ ∆ ∆ ∆X t IG t t t
t t

i j h j j h j
j

W

j

W

W i W

( ) ( ) =








 −











+~ , ,µ η µ
α α

β β
2 1

ii
, 

with a gamma distribution for β β βW i f a b
W i W i

~ ,( ) .

The IG process with Hjorth drift (IG-H) denoted as 4. 
∆ ∆ ∆ ∆X t IG t t t t

t
t

ti j h j j h j j
H

H j
j

H

H
( ) ( ) = +

+
− +

++
+

~ , ,µ η µ δ
θ
β

δ
θ
β

2
1

11 1 jj
.

The IG process with Hjorth drift and random effects (IG-H-5. 
RE) denoted as:  
∆ ∆ ∆ ∆X t IG t t t t

t
ti j h j j h j i j

H

H j
i j

H( ) ( ) = +
+

− +
++

+
~ , ,µ η µ δ

θ
β

δ
θ
β

2
1

11 1 HH jt , 
with a gamma distribution for δ δ δi f a b

i i
~ ,( ) .

The IG process with the Dimitrakopoulou drift (IG-DI) denot-6. 
ed as:  
∆ ∆ ∆ ∆X t IG t t ti j h j j h j( ) ( ) =~ , ,µ η µ2

 
α β λ λ α β λ λβ β β α β β

D D D j D j D D D j Dt t t t t tD D D D D D
+
− −

+

− − −+( ) − +1
1 1

1
1 1 11 1 jj

D Dβ α( ) −1
.
 

The IG process with the Dimitrakopoulou drift and random 7. 
effects (IG-DI-RE) denoted as:  
∆ ∆ ∆ ∆X t IG t t t t t ti j h j j h j Di D D j D j

D D( ) ( ) = ++
− −

+~ , ,µ η µ α β λ λβ β2
1

1 1
11 ββ α

D Di( ) −
−1

 
α β λ λβ β β α

Di D D j D jt t tD D D Di− − −
+( )1 1 1

1  with a gamma distribution for 

α α αDi f a b
Di Di

~ ,( ) .

The IG process with the Lai modified Weibull drift (IG-LAI) 8. 
denoted as :  
∆ ∆ ∆ ∆X t IG t t t vt t vti j h j j h j L L j j j
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1 1
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The IG process with the Xie modified Weibull drift (IG-XIE) 9. 
denoted as :  
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The IG process with the Chen drift (IG-CH) denoted as:  10. 
∆ ∆ ∆ ∆X t IG t t t t ti j h j j h j C C j j C

C C( ) ( ) = ( ) −+
−

+
−~ , , expµ η µ λ β λβ β2

1
1

1
1 ββ β β

C j jt tC C− −( )1 1exp .

4.1. Fatigue crack propagation dataset
The first case study consists of the propagation of a fracture in a 

terminal presented by Rodríguez-Picón et al. [24]. The authors per-
formed a degradation test based on a vibration profile, that ranges 

from 0.1 hundred thousand cycles to 0.9 hundred thousand cycles, to 
study the propagation of a fracture as a measure of the cracks’ length 
increase in millimeters (mm). Degradation measurements ( )i jX t  
were obtained for 1,2, ,10i = …  devices at 0,1 , ,1 0j = …  . From these 
measurements the cumulative degradation trajectories can be charac-
terized as illustrated in Figure 2. As reported by Rodríguez-Picón et 
al. [24], the critical level of degradation is determined to be 0.4 mm. 
The crack of two devices reached this critical level at the end of the 
degradation test. It can be noted from Figure 2, that there is a great 
variation in the behavior of the degradation trajectories, which en-
ables to consider different approaches to model these trajectories. The 
ten models previously enlisted were implemented to this degradation 
dataset. For this, the Bayesian estimation approach described in Sec-
tion 3 was considered. In Table 1, the estimations of all the parameters 
for all the scenarios are presented. Furthermore, the standard devia-
tion (SD) and Monte Carlo (MC) error are provided along with the 

0.025p , 0.5p , 0.975p  percentiles. It can be noted that for the models 
with random effects, the estimations of the parameter defined as ran-
dom are provided according to the number of trajectories.

Fig. 2. Crack propagation trajectories for the first case study [24]

In Table 2, the DIC is presented for the ten considered modelling 
schemes. Along with the DIC the ranking for each model is presented 
by considering that the model with the lowest value of the DIC is con-
sidered to be the best fitting model. It can be noted that the model with 
the lowest DIC is the IG with the Hjorth hazard rate-based drift and δi 
as a random effects parameter with a value of -2178. The second-best 
model is the IG with Hjorth hazard rate-based drift and no random 
effects with a DIC value of -593.2. There is a big difference between 
the DICs values of these two models, which mean that the IG-H-RE 
is definitely the best fitting model.  Furthermore, the model with the 
poorest performance is the IG with Chen hazard rate-based drift. It 
can be also noted that the simple IG model and the IG with Weibull 
hazard rate-based drift proposed by Peng et al. [20] are ranked in 6th 
and 7th place respectively, which denotes that the currently proposed 
models in the literature do not characterize the degradation trajecto-
ries efficiently.

4.2. Aluminum alloy crack growth study
The second case study was presented by Wu and Ni [35] and con-

sisted in a degradation test performed to a batch of 2024-T351 alu-
minum alloy specimens. The authors considered a dynamic testing 
to perform vibration load cycles from 10,000 to 40,000 to the speci-
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Table 1. Obtained estimations for the first case study and all the considered models 

Model Parameter Mean SD MC error 0.025p 0.5p 0.975p

IG
µ 6.025 0.8943 2.99E-03 4.396 5.985 7.901
η 0.3855 0.03397 1.21E-04 0.3275 0.3825 0.4609

IG-W

Wβ 0.9753 0.09859 6.38E-04 0.7668 0.9799 1.155

Wα 2.718 0.3697 0.00248 2.078 2.688 3.522
η 5.955 0.8824 0.00323 4.363 5.91 7.8

IG-W-RE

1Wβ 0.9749 0.1144 0.00485 0.7276 0.9818 1.18

2Wβ 0.9597 0.1078 0.00463 0.723 0.9676 1.148

3Wβ 0.9749 0.1141 0.00483 0.7285 0.9819 1.178

4Wβ 0.9738 0.1134 0.00481 0.7265 0.9807 1.175

5Wβ 0.9646 0.1107 0.00473 0.7233 0.9715 1.16

6Wβ 0.9675 0.1118 0.00476 0.7245 0.9744 1.165

7Wβ 0.9721 0.1122 0.00478 0.7281 0.9792 1.171

8Wβ 0.9666 0.1113 0.00474 0.7243 0.974 1.162

9Wβ 0.9657 0.1091 0.00468 0.726 0.973 1.156

10Wβ 0.974 0.1133 0.00481 0.7272 0.9807 1.176

Wα 2.733 0.385 0.0126 2.086 2.697 3.592
η 5.964 0.8963 0.00688 4.336 5.919 7.844

W i
aβ 1326 804.2 45.98 234.4 1142 3594

W i
bβ 1271 744.6 42.49 227.9 1093 2851

IG-H

Hβ 0.2022 0.6773 0.02257 7.77E-20 1.92E-04 2.423

δ 0.3975 0.05178 0.001674 0.3289 0.3884 0.5315
η 5.905 0.8836 0.006772 4.318 5.86 7.736

Hθ 47.31 210.6 5.938 2.94E-11 0.05462 512.7

IG-H-RE

Hβ 58.22 239.9 6.71 5.29E-13 0.01073 635.9

1δ 0.3916 0.05005 0.003141 0.3192 0.3847 0.5158

2δ 0.396 0.04985 0.003165 0.3242 0.3883 0.5205

3δ 0.3901 0.04984 0.003125 0.317 0.3832 0.5128

4δ 0.3899 0.04996 0.003151 0.3162 0.3829 0.5098

5δ 0.3982 0.04991 0.003183 0.3264 0.3906 0.5192

6δ 0.3948 0.04994 0.003172 0.3221 0.3872 0.5186

7δ 0.3925 0.0498 0.003152 0.32 0.3849 0.5134

8δ 0.3944 0.04962 0.003143 0.3217 0.3874 0.5171

9δ 0.3909 0.04982 0.00315 0.3175 0.3839 0.5118

10δ 0.3902 0.04976 0.003126 0.3177 0.3834 0.5104
η 5.924 0.8847 0.006718 4.312 5.877 7.772

i
aδ 1465 702.8 58.21 434.9 1354 3097

i
bδ 569.4 264.1 21.81 165.2 529.5 1152

Hθ 11.89 47.76 1.778 1.06E-15 0.002033 146.2

IG-DI 

Dα 1.262 0.9819 0.09716 3.39E-01 0.943 4.07

Dβ 2.014 0.1418 0.009797 1.74E+00 2.015 2.292
η 5.768 0.864 0.01476 4.20E+00 5.731 7.537

Dλ 0.2568 0.1835 0.01757 4.52E-02 0.2105 0.7503
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mens. They recorded the cracks length increments of the specimens 
until a total fracture was observed. Thus, degradation measurements 
X ti j( )  were obtained for 1,2, ,30i = …  and 0,1 , 2, 3, 4j =  with 
( ) 4

0 1 2 3 40, 1, 2, 3, 4 10  t t t t t= = = = = × cycles. From these measure-
ments, the trajectories are characterized as illustrated in Figure 3. 
From Figure 3, it can be noted that some of the trajectories have a 
higher degradation rate, specifically the ones that are on top. While, 
other trajectories have a lower degradation rate, specifically the ones 
that are on the bottom. These differences in degradation rate allows to 
consider that the degradation rate needs to be considered as a flexible 
function. Furthermore, Wu and Ni [35] considered a stochastic fatigue 

crack growth model based on the Paris-Erdogan law, which does not 
consider the flexibility of the degradation rates. In the aims demon-
strate the applicability of the proposed modelling scheme, the ten pro-
posed models were fitted to the dataset by considering the Bayesian 
estimation procedure. The obtained results are presented in Table 3, 
where the estimations for the corresponding parameters are presented 
in the mean column, SD, MC error and the percentiles 0.025p , 0.5p , 

0.975p  are also provided.

Table 2. DIC values and rankings for the models estimated in the first case study

Model DIC Ranking

IG −438.1 6

IG-W −436 7

IG-W-RE −435.7 9

IG-H −593.2 2

IG-H-RE −2178 1

IG-DI −464.8 3

IG-DI-RE -440.1 5

IG-LAI -435.9 8

IG-XIE -440.3 4

IG-CH -425.1 10 Fig. 3. Crack propagation trajectories for the second case study

IG-DI-RE

1Dα 0.9211 0.3041 0.02462 0.3861 0.8961 1.556

2Dα 0.928 0.3056 0.02475 0.39 0.9007 1.556

3Dα 0.918 0.3034 0.02457 0.3819 0.8953 1.552

4Dα 0.9173 0.3041 0.02462 0.3822 0.8936 1.548

5Dα 0.9333 0.3066 0.02484 0.3942 0.9076 1.569

6Dα 0.9257 0.3057 0.02475 0.3881 0.8992 1.561

7Dα 0.9228 0.3038 0.0246 0.3884 0.8991 1.552

8Dα 0.9251 0.3058 0.02477 0.3857 0.8994 1.562

9Dα 0.9187 0.3037 0.02458 0.3829 0.8941 1.552

10Dα 0.9174 0.3031 0.02455 0.3805 0.8935 1.541

Dβ 2.017 0.117 0.005515 1.777 2.018 2.249
η 5.823 0.886 0.008678 4.225 5.782 7.686

Dλ 0.2547 0.1254 0.009851 0.1177 0.222 0.613

Di
aα 898.4 404.9 33.57 252.2 833.2 1762

Di
bα 776.9 328.1 27.2 193.8 775.3 1435

IG-LAI

Lβ 1.958 0.1308 0.003648 1.635 1.974 2.164
η 5.818 0.8699 0.006059 4.24 5.767 7.634

Lλ 0.1888 0.0259 7.46E-04 0.1331 0.1886 0.2406

v 0.04278 0.1004 0.004233 1.73E-16 3.18E-04 0.376

IG-XIE 

Xα 21.8 36.71 2.46 1.671 7.568 133.7

Xβ 1.947 0.1334 0.005281 1.633 1.963 2.16
η 5.806 0.8699 0.006748 4.243 5.761 7.657

Xλ 4.353 8.294 0.5436 0.2357 1.411 29.1

IG-CH

Cβ 1.425 0.176 0.002345 1.105 1.421 1.774
η 5.148 0.7725 0.005844 3.737 5.113 6.754

Cλ 0.1388 0.02412 3.89E-04 0.1065 0.1337 0.2015
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In Table 4, the obtained DIC values for all the fitted models are 
provided. Again, the best fitting model is considered as the one with 
the lowest DIC value. For this dataset, the IG model with the Hjorth 
hazard rate-based drift and random effects has the lowest DIC value 
as −2620. The second-best fitting model, as in the case of the first case 
study, is the IG model with Hjorth hazard rate-based drift and without 
random effects with a DIC value of -2143. It can also be noted that the 
two models with the highest DIC values are the simple IG and the IG 
model with Weibull hazard rate-based drift, which denotes that these 
models have the poorest performance.

5. Discussion 
The best fitting models for the two case studies can be further 

analyzed according to the considered hazard rate functions. For the 
first case study, it was found that the Hjorth hazard rate-based drift 
with random effects is the best fitting model for the degradation tra-
jectories. As this model considers the iδ  parameter as random, then 
this parameter was estimated for each trajectory as can be noted in 
Table 1. Furthermore, the shape of the drift can be further analyzed by 
considering the properties discussed in Section 2. Particularly, it was 

Table 3. Estimated parameters for the second case study

Model Parameter Mean SD MC error 0.025p 0.5p 0.975p

IG
η 15.22 1.607 0.01124 12.24 15.15 18.54
µ 1.754 0.06278 4.52E-04 1.636 1.752 1.882

IG-W
Wβ 1.714 0.0682 0.001694 1.578 1.714 1.849

Wα 1.443 0.0604 0.001518 1.318 1.445 1.555

η 23.98 2.517 0.0198 19.34 23.88 29.22

IG-W-RE

1Wβ 1.295 0.051 6.42E-04 1.201 1.293 1.403

2Wβ 1.468 0.06085 8.32E-04 1.356 1.465 1.596

3Wβ 1.879 0.09107 0.001349 1.715 1.874 2.072

4Wβ 1.91 0.09147 0.001434 1.746 1.904 2.104

5Wβ 1.777 0.08171 0.001247 1.628 1.774 1.948

6Wβ 1.729 0.07836 0.001123 1.587 1.726 1.894

7Wβ 1.931 0.0904 0.0013 1.766 1.927 2.124

8Wβ 1.275 0.04971 6.61E-04 1.183 1.273 1.379

9Wβ 2.062 0.101 0.001662 1.877 2.057 2.274

10Wβ 1.221 0.04604 5.91E-04 1.137 1.219 1.317

11Wβ 1.406 0.05727 7.69E-04 1.301 1.403 1.526

12Wβ 2.04 0.09898 0.001649 1.861 2.035 2.249

13Wβ 1.719 0.07708 0.00104 1.581 1.715 1.882

14Wβ 1.677 0.07338 0.001023 1.545 1.673 1.833

15Wβ 1.294 0.05129 6.73E-04 1.2 1.292 1.403

16Wβ 1.807 0.08416 0.001222 1.651 1.803 1.983

17Wβ 1.734 0.07921 0.001066 1.589 1.731 1.901

18Wβ 1.68 0.0763 9.88E-04 1.54 1.677 1.841

19Wβ 1.457 0.06127 7.20E-04 1.346 1.454 1.586

20Wβ 1.204 0.0456 6.26E-04 1.12 1.202 1.299

21Wβ 1.691 0.07548 0.001052 1.554 1.688 1.851

22Wβ 1.269 0.04972 6.46E-04 1.179 1.267 1.373

23Wβ 1.603 0.0694 9.15E-04 1.477 1.6 1.748

24Wβ 1.361 0.05412 7.33E-04 1.262 1.359 1.474

25Wβ 1.772 0.08104 0.001149 1.626 1.769 1.943

26Wβ 2.033 0.09774 0.001615 1.856 2.028 2.241

27Wβ 1.531 0.0653 9.37E-04 1.411 1.528 1.666

28Wβ 1.417 0.05884 7.97E-04 1.31 1.414 1.541

29Wβ 1.846 0.08622 0.001228 1.691 1.841 2.028

30Wβ 2.136 0.1045 0.001743 1.949 2.13 2.359

Wα 1.409 0.03044 8.03E-04 1.349 1.41 1.468

η 97.52 11.23 0.1063 76.95 97.05 121.1

W i
aβ 22.57 6.175 0.401 12.23 22.08 36.81

W i
bβ 36.96 9.935 0.6449 20.29 36.24 60.06
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IG-H

Hβ 0.05466 0.05342 0.002552 0.01524 0.03533 0.2033

δ 9.88E+00 4.61E+00 0.2338 3.305 9.188 18.73
η 23.69 2.514 0.01769 19.02 23.6 28.88

Hθ 373.5 349.1 17.72 17.18 248.9 1160

IG-H-RE

Hβ 0.03862 0.009497 4.74E-04 0.02584 0.03643 0.06454

1δ 6.112 0.9846 0.04914 4.084 6.164 8.043

2δ 6.296 0.9859 0.04913 4.269 6.347 8.224

3δ 7.032 0.9992 0.04923 4.994 7.082 8.97

4δ 7.059 0.9991 0.0492 5.027 7.107 8.996

5δ 6.792 0.9937 0.04917 4.756 6.843 8.722

6δ 6.737 0.9928 0.04918 4.708 6.787 8.669

7δ 7.055 0.9992 0.0492 5.019 7.106 8.992

8δ 6.079 0.9847 0.04916 4.05 6.128 8.006

9δ 7.328 1.005 0.04925 5.287 7.373 9.269

10δ 5.946 0.9836 0.04915 3.923 5.996 7.873

11δ 6.264 0.9857 0.04913 4.239 6.315 8.192

12δ 7.292 1.004 0.04923 5.251 7.339 9.235

13δ 6.714 0.9924 0.04917 4.684 6.765 8.648

14δ 6.596 0.9892 0.0491 4.57 6.647 8.519

15δ 6.047 0.984 0.04916 4.023 6.098 7.971

16δ 6.865 0.9952 0.04918 4.832 6.916 8.797

17δ 6.708 0.9918 0.04914 4.677 6.756 8.63

18δ 6.684 0.9922 0.04918 4.648 6.735 8.611

19δ 6.336 0.9865 0.04914 4.307 6.388 8.261

20δ 6.016 0.9846 0.04917 3.989 6.065 7.945

21δ 6.618 0.9898 0.04912 4.587 6.669 8.545

22δ 6.115 0.9853 0.04917 4.087 6.164 8.04

23δ 6.486 0.9879 0.04912 4.458 6.54 8.41

24δ 6.203 0.9847 0.04911 4.178 6.254 8.133

25δ 6.798 0.9938 0.04917 4.767 6.849 8.725

26δ 7.279 1.004 0.04922 5.236 7.326 9.217

27δ 6.423 0.9869 0.04911 4.398 6.474 8.351

28δ 6.234 0.9853 0.04914 4.21 6.285 8.155

29δ 6.932 0.9956 0.04913 4.898 6.982 8.857

30δ 7.492 1.009 0.04926 5.45 7.536 9.437
η 68.31 7.969 0.04693 53.62 68.01 84.69

i
aδ 34.93 10.29 0.4762 17.87 33.61 57.58

i
bδ 235 87.79 4.222 96.04 218.4 431.1

Hθ 165.6 58.88 2.973 61.45 164.9 293.2

IG-DI 

12δ 3.283 1.518 0.127 1.245 2.934 7.177

13δ 1.301 0.3699 0.0309 0.83 1.224 2.241

14δ 24.49 2.61 0.02612 19.65 24.42 29.85

15δ 0.24 0.04577 0.003546 0.139 0.242 0.3227
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 IG-DI-RE

1α 2.698 0.3977 0.03304 2.084 2.684 3.724

2α 2.853 0.4161 0.03454 2.206 2.837 3.922

3α 3.236 0.4645 0.03844 2.51 3.222 4.431

4α 3.248 0.4662 0.0386 2.521 3.232 4.45

5α 3.127 0.451 0.03737 2.426 3.112 4.29

6α 3.094 0.4471 0.03706 2.398 3.077 4.251

7α 3.246 0.4651 0.03851 2.525 3.23 4.447

8α 2.679 0.3948 0.0328 2.066 2.665 3.698

9α 3.36 0.4799 0.0397 2.61 3.344 4.599

10α 2.603 0.3826 0.03182 2.009 2.589 3.596

11α 2.809 0.4123 0.03423 2.171 2.793 3.88

12α 3.343 0.4776 0.03953 2.599 3.326 4.573

13α 3.082 0.4457 0.03695 2.386 3.065 4.227

14α 3.031 0.4383 0.03634 2.349 3.016 4.158

15α 2.689 0.3956 0.03287 2.08 2.673 3.716

16α 3.159 0.4551 0.0377 2.447 3.143 4.33

17α 3.086 0.4455 0.03693 2.393 3.072 4.23

18α 3.062 0.4436 0.03678 2.374 3.045 4.206

19α 2.86 0.4184 0.03473 2.215 2.845 3.94

20α 2.614 0.3868 0.03215 2.014 2.6 3.615

21α 3.045 0.4396 0.03644 2.358 3.03 4.174

22α 2.684 0.3963 0.03292 2.073 2.669 3.712

23α 2.971 0.4318 0.03582 2.305 2.955 4.091

24α 2.764 0.4066 0.03376 2.133 2.75 3.815

25α 3.126 0.4511 0.03737 2.426 3.11 4.292

26α 3.339 0.4769 0.03947 2.596 3.321 4.564

27α 2.919 0.4257 0.03533 2.257 2.903 4.018

28α 2.808 0.4113 0.03416 2.173 2.795 3.873

29α 3.189 0.4582 0.03794 2.481 3.175 4.367

30α 3.421 0.4879 0.04035 2.656 3.406 4.672

Dβ 1.177 0.09492 0.007873 1.001 1.168 1.356
η 129.9 15.08 0.1666 101.8 129.4 161.1

Dλ 0.2674 0.0197 0.001538 0.2236 0.2681 0.3023

Di
aα 58.31 15.2 1.204 35.45 56.24 91.14

Di
bα 173.1 42.37 3.332 97.82 171.9 260.1

IG-LAI

Lβ 1.993 0.5088 0.04204 1.109 1.901 2.771

η 24.55 2.645 0.04322 19.68 24.43 30.05

Lλ 0.4303 0.26 0.0208 0.1742 0.3674 1.138
v 0.1285 0.0846 0.00691 3.6E-10 0.1525 0.2535

IG-XIE

Xα 5.257 1.727 0.1686 2.344 5.165 9.693

Xβ 1.686 0.4612 0.0441 0.8857 1.702 2.556
η 25.15 2.619 0.03849 20.24 25.05 30.5

Xλ 3.01 1.588 0.1529 1.777 2.549 8.125

IG-CH
Cβ 0.6611 0.02709 0.001784 0.5951 0.664 0.7058

η 24.46 2.627 0.02276 19.63 24.38 29.93

Cλ 1.677 0.4554 0.0312 1.119 1.573 2.998
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denoted that if 0 i H Hδ θ β< < , then the rate has a bathtub shape. By 
considering from Table 2 that 11.89Hθ = , 58.22Hβ =  and the indi-
vidual values of , 1,2, ,10i iδ = … , it can be noted that 0 i H Hδ θ β< <  

results as 0 692.2358  i iδ< < ∀ . Thus, for this particular case study, 
the best fitting model detects that all the trajectories have a bathtub 
rate. 

On the other hand, from the obtained results of the second case 
study it was found that the best fitting model is also the Hjorth haz-
ard rate-based drift with random effects is the best model. From the 
Table 3, it can be noted that the values of iδ  vary from trajectory to 
trajectory. Again, the estimated parameters allow to analyze the be-
haviors of the trajectory’ rates individually. Besides the case when 
0 i H Hδ θ β< < , which denotes a bathtub shape rate, it is known that 
when i H Hδ θ β≥  then the degradation rate is increasing. These two 
properties can be analyzed for this case study by considering the es-
timations from Table 3. In Table 5, the product H Hθ β  is compared 
with iδ  for 1,2, ,30i = …  in the aims of detecting the individual deg-
radation rates.

It can be noted from Table 5, that 0 6.395iδ< <  for 
1, 2, 8,1 0,1 1,1 5,1 9, 20, 22, 24, 28i = , which means that these trajecto-

ries have a bathtub rate. While, for the rest of the trajectories it can 
be noted that 6.395iδ ≥ , which denotes that these trajectories have 
an increasing rate. These results are illustrated in Figure 4, where the 
red dashed lines represent the trajectories with bathtub rates and the 
continuous black lines denote the trajectories with increasing rate. It 
can be noted that the increasing rate trajectories are well identified 
as the degradation rate is continuously growing compared with the 
trajectories with bathtub rates.

6. Conclusion
The degradation rate is an important aspect to be considered when 

modelling the degradation process of a characteristic of interest. As 
this aspect may not be constant given the homogenous characteristics 
of the specimen under test or the environmental conditions. In this 
paper, a modelling approach was considered based on the inclusion of 
different hazard rate functions in the drift of the IG process. This in-
clusion allows to efficiently describe the behaviour of the degradation 
rates, as the hazard rate functions have flexible behaviours that can be 
characterized according to certain values of its parameters. From the 
analysed case studies, it was found that the best fitting models were 
those considering the Hjorth hazard rate as the drift in the IG process 
besides the consideration of iδ  as a random effects parameter. In first 
instance, there was a clear difference of the DIC values of the different 
models and the IG-H-RE model. Indicating a clear advantage over the 
simple IG process and the IG with Weibull rate model proposed by 

Table 4. DIC values and rankings for the fitted models of the second case 
study.

Model DIC Ranking

IG 141.9 10

IG-W 61.29 9

IG-W-RE −163.8 5

IG-H −2143 2

IG-H-RE −2620 1

IG-DI −235.7 4

IG-DI-RE −252.8 3

IG-LAI 21.69 7

IG-XIE 15.14 6

IG-CH 53.76 8

Table 5. Detecting the rate shape for the trajectories of the second case 
study

Trajectory (i) iδ H Hθ β Shape of rate

1 6.112 6.395 Bathtub

2 6.296 6.395 Bathtub

3 7.032 6.395 Increasing

4 7.059 6.395 Increasing

5 6.792 6.395 Increasing

6 6.737 6.395 Increasing

7 7.055 6.395 Increasing

8 6.079 6.395 Bathtub

9 7.328 6.395 Increasing

10 5.946 6.395 Bathtub

11 6.264 6.395 Bathtub

12 7.292 6.395 Increasing

13 6.714 6.395 Increasing

14 6.596 6.395 Increasing

15 6.047 6.395 Bathtub

16 6.865 6.395 Increasing

17 6.708 6.395 Increasing

18 6.684 6.395 Increasing

19 6.336 6.395 Bathtub

20 6.016 6.395 Bathtub

21 6.618 6.395 Increasing

22 6.115 6.395 Bathtub

23 6.486 6.395 Increasing

24 6.203 6.395 Bathtub

25 6.798 6.395 Increasing

26 7.279 6.395 Increasing

27 6.423 6.395 Increasing

28 6.234 6.395 Bathtub

29 6.932 6.395 Increasing

30 7.492 6.395 Increasing

Fig. 4. Illustration of the bathtub and increasing rates of the second case 
study
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Peng et al. [20]. Furthermore, the Hjorth model with random effects 
allowed to identify the behaviour of each trajectory individually. For 
the first case study, it was found that all the trajectories have bathtub 
rates, while for the second case study it was found that a set of trajec-
tories have an increasing rate, and the other set of trajectories have a 
bathtub rate. The degradation rates of the individually identified tra-
jectories was illustrated in Figure 4. This modelling approach presents 
the advantage of individually characterize the degradation trajectories, 
which may present important advantages for the reliability assessment 
of products and systems. There are several aspects that can be ex-
tended for further research. In first instance, other approaches with 

multiple random effects can be studied for several hazard rate func-
tions. This may allow to improve the characterization of the degrada-
tion trajectories. Although, this implies to deal with complex models 
that may require major computational resources. Furthermore, other 
sources of uncertainty may be considered in the IG process such as 
measurement errors. Finally, other hazard rate functions can be con-
sidered to describe the drift of the IG process. Although, other PDFs 
have been proposed in the literature that can describe a wide range of 
hazard rate behaviours, the parametric form of the hazard rates may 
be complex with non-closed terms which would result in a complex 
model to be estimated. 
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